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Abstract 

The problem of uniform distribution of points on surfaces in multi-dimensional Euclidean 

space is considered. Method for uniform distribution of points on analytic surfaces defined by 

the parametric method in multi-dimensional Euclidean space is proposed. The proposed method 

can be used for uniform distribution of points on the hypersphere and hyperellipsoid, as an 

additional method to already existing, and for the uniform distribution of points on the other 

parametric surfaces in a multidimensional Euclidean space. Due to generality the proposed 

method can be also used for uniform distribution of points on curves in a multi-dimensional 

Euclidean space. The method also works in three-dimensional physical space which is an 

ordinary for the human perception, and certainly it can be applied to a uniform distribution of 

points on curves and surfaces in three dimensional space for various scientific problems.  

 

Key words: hypersurface points picking, choosing random points on surfaces and curves, 

uniform distributions of points on surfaces and curves in multi-dimensional space 

 

1. Introduction 

The problem of uniform distribution of points on parametric surfaces in multi-

dimensional Euclidean space is important for various field of science such as mathematical 

modeling, numerical modeling, Monte Carlo techniques and many others.  

In [1-3], methods for uniform distribution of points on hypersphere were presented. 

These methods were developed by G. Marsaglia and M. Muller. In [4], the approach for uniform 

distribution of points on hypersphere and also its modification for uniform distribution of points 

on hyperellipsoid were presented. 

It’s important to note that in [5] the universal algorithm for uniform distribution of points 

on parametric surfaces in three-dimensional spaces was already proposed and described. In this 

paper the method for uniform distribution of points on analytic surfaces defined by the 

parametric method in multi-dimensional Euclidean space is proposed. This method is 

generalization and development of method proposed in [5]. 
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The proposed method can be used for uniform distribution of points on the hypersphere 

and hyperellipsoid (as additional one to already existing methods), and for uniform distribution 

of points on the other parametric surfaces in a multi-dimensional Euclidean space. Due to 

generality the proposed method can be also used for uniform distribution of points on curves in a 

multi-dimensional Euclidean space. The method also works in three-dimensional physical space 

which is an ordinary for the human perception, and certainly it can be applied to a uniform 

distribution of points on curves and surfaces in three-dimensional space for various scientific 

problems. 

The proposed method is enough general for uniform distribution of points on various 

surfaces in multi-dimensional Euclidean space because it allows to distribute points uniformly on 

arbitrary analytic surfaces in multi-dimensional space which can be defined in the parametric 

form 1 2( , , ..., ) n

m
u u u R∈r , n  - dimensionality of the space, m  - dimensionality of the surfaces 

( ,m n< max 1m n= − ). 

The proposed algorithm consists of two main parts. The first one is the finding of density 

function of the joint distribution of values of parameters 1 2, , ...,
m

u u u  corresponding to uniform 

distribution of points on a parametric given surface. The second one is the generating of multi-

dimensional random variable using generalized Neumann's method called also multi-dimensional 

acceptance-rejection method [4]. 

 

2. Statement of problem 

Let m -dimensional surface be defined by parametric functions in n -dimensional 

Euclidean space as 

1 1 2

2 1 2
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1 2

( , ,..., )

( , ,..., )
( , ,..., )
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( , ,..., )
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n m

x u u u

x u u u
u u u

x u u u

 
 
 =
 
 
 

r , (2.1) 

where the parameters 1 2, ,...,
m

u u u  are defined on the domain  

min max min max min max

1 1 1 2 2 2{ , ,..., }
m m m

D u u u u u u u u u= ≤ ≤ ≤ ≤ ≤ ≤ . (2.2) 

It is necessary to distribute uniformly points on this surface. 

 

3. Density function of the joint distribution of values of parameters corresponding to 

uniform distribution of points on a given surfaces 

Let parametric surface be defined by parametric functions 
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r , (3.1) 

where the parameters 1 2, ,...,
m

u u u  are defined on the domain  

min max min max min max

1 1 1 2 2 2{ , ,..., }
m m m

D u u u u u u u u u= ≤ ≤ ≤ ≤ ≤ ≤ . (3.2) 

It is necessary to find analytically a density function 1 2( , ,..., )
m

f u u u  of the joint 

distribution of values of parameters 1 2, ,...,
m

u u u  corresponding to uniform distribution of points 

on the considered surface. 

In the case when points are uniformly distributed on the considered surface, according to 

geometrical interpretation, a probability of entering of any point С  on a surface area element dA , 

on the one hand, can be defined as 

( )
dA

P C dA
A

⊂ = ,  (3.3) 

where  

1 2... mdA gdu du du= . (3.4) 

Here det( )
ij

g g=  - determinant of the metric tensor matrix on the surface. 

The matrix of the metric tensor on the surface 1 2( , ,..., )
m

u u ur  has form 

( )

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

m

m

ij

m m mm

g g g

g g g
g

g g g

 
 
 =
 
 
 

, (3.5) 

where , 1, 2,...,i j m= , 1 2 1 2( , ,..., ) ( , ,..., )
( , )m m

ij

i j

u u u u u u
g

u u

∂ ∂
=

∂ ∂

r r
 - element of the matrix of the 

metric tensor on the surface, ( ... , ... )  - denotes the operation of the scalar product of the vector 

functions, that is 1 2 1 2

1

( , ,..., ) ( , ,..., )
( )

n
k m k m

ij

k i j

x u u u x u u u
g

u u=

∂ ∂
= ⋅

∂ ∂
∑ . It is important to note that 0g > . 

The surface area on the domain D is equal  

1 2... ... m

D

A gdu du du= ∫∫∫ ∫ . (3.6) 

And consequently, 
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1 2

1 2

...
( )

... ...

m

m

D

gdu du du
P C dA

gdu du du
⊂ =

∫∫∫ ∫
. 

(3.7) 

On the other hand, a probability of entering of any point С  on a surface area element dA  

can be also defined as  

1 2 1 2( ) ( , ,..., ) ...
m m

P C dA f u u u du du du⊂ = ,  (3.8) 

where 1 2( , ,..., )
m

f u u u  is the required density function of the joint distribution of parameters 

1 2, ,...,
m

u u u . 

Taking into account expressions (3.7) and (3.8) we obtain the required density function of 

the joint distribution of values of the parameters 1 2, ,...,
m

u u u  which corresponds to the uniform 

distribution of points on surface 

1 2

1 2

( , ,..., )
... ...

m

m

D

g
f u u u

gdu du du
=

∫∫∫ ∫
.  

(3.9) 

By generating the values of 1 2, ,...,
m

u u u  with the help of the obtained 

function 1 2( , ,..., )
m

f u u u , and then finding corresponded coordinates of points, we obtain uniform 

distribution of points on the considered surface.  

 

4. Generating multi-dimensional random variables by using a known density function 

of the joint distribution  

Various methods are used to generate values of one-dimensional random variable by using 

a known density function of distribution, see [4]. For example, the inverse-transform method can 

be applied in the cases when the probability distribution function can be obtained analytically. 

However, application of this method meets difficulties in the cases of multi-dimensional 

distributions of dependent random variables. A universal method for generating values of one-

dimensional and multi-dimensional random variable is the acceptance-rejection method known 

also as Neumann’s method [4].  

Firstly, let us consider the acceptance-rejection method on the example of one-dimensional 

random variable values generation by using function of the joint distribution. Then we consider a 

generalization of this method for multi-dimensional random variable generating by using a 

known density function of the joint distribution. 
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Fig. 4.1. Illustration of acceptance-rejection method for one-dimensional random variable 

generating with the help of the density function of distribution 

 

In the case of generation of one-dimensional random variable values generating, the 

acceptance-rejection method consists in the following steps (see fig. 4.1): 

1) The density function of distribution is placed in the rectangle such a way as it is 

shown in figure 4.1; 

2) One generates random point with coordinates ( )Randomx b a a= − + , 

Randomy c= , where Random  is random number with uniform distribution on interval (0,1) ; 

3) The obtained point is accepted if it lies below the curve of density function of 

distribution. Otherwise, the point is rejected (see fig. 4.1); 

4) One then repeats steps 2, 3. 

In application to multi-dimensional cases the generation procedure is unchanged except 

one take into account changes in the dimensionality of space. For m -dimensional random 

variables corresponding to our case the procedure is carried out in the ( 1)m +  - dimensional 

space. In this case, the algorithm is implemented as follows: 

1) One finds 1 2max ( , ,..., )
m

D
f u u u  - maximal value of function 1 2( , ,..., )

m
f u u u  on the 

domain min max min max min max

1 1 1 2 2 2{ , ,..., }
m m m

D u u u u u u u u u= ≤ ≤ ≤ ≤ ≤ ≤ . 

2) m  random numbers 0 max min min

1 1 1 1( )Random+u u u u= − , 

0 max min min

2 2 2 2( )Random+u u u u= − ,  … , 0 max min min( )Random+
m m m m

u u u u= −  are generated, where 

Random  is random number on interval (0,1) ; 

3) If 0 0 0

1 2 1 2( , ,..., ) Random max ( , ,..., ) m m
D

f u u u f u u u> ⋅ , the point is accepted (here, 

Random  is also random number on interval (0,1) ). Otherwise, the point is rejected; 

4) One repeats steps 2, 3. 
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It is very important to note that in this algorithm the function *

1 2( , ,..., )mf u u u g=  can 

be used instead of the function 
1 2

1 2

( , ,..., )
... ...

m

m

D

g
f u u u

gdu du du
=

∫∫∫ ∫
. It is possible because 

0 0 0

1 2 1 2( , ,..., ) Random max ( , ,..., )m m
D

f u u u f u u u> ⋅ <=>  

0

1 1

0

2 2

1 2 1 2
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,
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...,... ... ... ...D
m m

D D

m m

u u

u u gg

gdu du du gdu du du

u u

=

=
<=> > ⋅ <=>

=

∫∫∫ ∫ ∫∫∫ ∫
 

0

1 1

0

2 2

0

,

,
Random max .

..., D

m m

u u

u u
g g

u u

=

=
<=> > ⋅

=

 

This allows simplify the calculations. 

By generating the values of 1 2, ,...,
m

u u u  with the help of density function 1 2( , ,..., )
m

f u u u  

using described in this section multi-dimensional acceptance-rejection method and then finding 

corresponding coordinates values of coordinates of points; we obtain uniform distribution of 

points on the considered surface.  

 

5. Uniform distribution of points on curves 

When 1m =  we have the curve in nR , and the matrix of the metric tensor has form 

( ) ( )11ij
g g= , 

where  

2 2 21 1 11 1 2 1
11

1 1 1 1 1 1

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ... ( )

n
k k n

k

x u x u x ux u x u
g

u u u u u=

∂ ∂ ∂∂ ∂
= ⋅ = + + +

∂ ∂ ∂ ∂ ∂
∑ , 

or in a more conventional form, when 1u t= , it can be rewritten as 

2 2 21 2
11

1

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ... ( )

n
k k n

k

x t x t x tx t x t
g

t t t t t=

∂ ∂ ∂∂ ∂
= ⋅ = + + +

∂ ∂ ∂ ∂ ∂
∑ . 

Thus the density function for uniform distribution of points on curves is equal 
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2

1

2 2 21 2

2 2 21 2

( )( ) ( )
( ) ( ) ... ( )

( )
( )( ) ( )

( ) ( ) ... ( )

n

t

n

t

x tx t x t

t t t
f t

x tx t x t
dt

t t t

∂∂ ∂
+ + +

∂ ∂ ∂
=

∂∂ ∂
+ + +

∂ ∂ ∂∫

. 

In three-dimensional space we respectively have 

1

1

2 2 2

2 2 2

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

t

t

x t y t z t

t t t
f t

x t y t z t
dt

t t t

∂ ∂ ∂
+ +

∂ ∂ ∂
=

∂ ∂ ∂
+ +

∂ ∂ ∂∫

. 

 In figure 5.1 uniform distribution of points on planar curve is shown. The curve is defined 

by parametric equations  

2100( 4,25)
( ) , ( ) 10 sin 6 2sin 2, ( ) 0

t
x t t y t e t t z t

− −
= = − + − + = , 

where [0,10]t ∈ . 

 

 

Fig. 5.1. Uniform distribution of points on planar curve  

 

In figure 5.2 uniform distribution of points on Viviani's curve is shown. The Viviani's 

curve is defined by parametric equations  

( ) (1 cos ), ( ) sin , ( ) 2 sin ,
2

t
x t R t y t R t z t R= + = =  

where 1, [0, 4 ]R t π= ∈ . 
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Fig. 5.2. Uniform distribution of points on Viviani's curve 

 

6. Uniform distribution of points on surfaces in three-dimensional space 

When 2m =  and 3n =  we have the surface in 3R , and the matrix of the metric tensor has 

form 

( ) 11 12

21 22

ij

g g
g

g g

 
=  
 

. 

 

The function 
1 2

1 2

( , ,..., )
... ...

m

m

D

g
f u u u

gdu du du
=

∫∫∫ ∫
 can be written as 

2

11 22 12

1 2
2

11 22 12 1 2

( , )

D

g g g
f u u

g g g du du

−
=

−∫∫
. 

Taking into account that 
11g E= , 

12 21g g F= = , 
22g G=  are the coefficients of the first 

fundamental form of surface, the function (6.2) can be rewritten  

2

2
( , )

D

EG F
f u v

EG F dudv

−
=

−∫∫
. 
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This function was already obtained in [5]. Thus we obtain the result of [5]. 

In figure 6.1 uniform distribution of points on surface of torus  is shown. The surface of 

torus is defined by parametric equations  

( , ) (3 cos )cosx x u v u v= = + , ( , ) (3 cos )siny y u v u v= = + , ( , ) sinz z u v u= = ,  

where 0 2u π≤ ≤ , 0 2v π≤ ≤ . 

 

 

 

Fig. 6.1. Uniform distribution of points on surface of torus 

 

 

In figure 6.2 uniform distribution of points on surface of Klein bottle is shown. The 

surface of Klein bottle is defined by parametric equations [6]: 

2 6 4( , ) cos (3cos 5sin cos cos 30sin 60sin cos 90sin cos )
15

x x u v u v u v u u u v u v= = − + − − + , 

1 7 6 5( , ) sin (80cos cos sin 48cos cos 80cos cos sin
15

4 3 248cos cos 5cos cos sin 3cos cos 5sin cos cos 3cos 60sin )

y y u v u v u u v u v u u

v u v u u v u u v u v u

= = − + − −

− − − + + −

, 

2
( , ) sin (3 5sin cos )

15
z z u v v u u= = + , 

where / 2 / 2uπ π− ≤ ≤ , 0 2v π≤ ≤ . 
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Fig. 6.2. Uniform distribution of points on surface of Klein bottle 

 

7. Conclusions 

The proposed method can be applied for uniform distributions of points on various 

parametric surfaces and hypersurfaces. The method of G. Marsaglia is very simple and reliable, 

but it can be applied only for hypersphere, while the area of possible application of the proposed 

method is much wider.  

 

References 

1. Marsaglia, G. "Choosing a Point from the Surface of a Sphere." Ann. Math. Stat. 43, 

645-646, 1972.  

2. Muller, M. E. "A Note on a Method for Generating Points Uniformly on n-

Dimensional Spheres." Comm. Assoc. Comput. Mach. 2, 19-20, Apr. 1959. 

3. Weisstein, Eric W. "Hypersphere Point Picking." From MathWorld--A Wolfram Web 

Resource. http://mathworld.wolfram.com/HyperspherePointPicking.html. 



 

© Kopytov N.P., Mityushov E.A., 2013 

11 

4. Rubinstein R.Y., Kroese D.P. Simulation and the Monte Carlo methods. Second 

Edition. Wiley-Intersciens, 2007. 345 p. 

5. Kopytov N.P., Mityushov E.A. Universal Algorithm Of Uniform Distribution Of 

Points On Arbitrary Analitic Surfaces In Three-dimensional Space 

http://www.intellectualarchive.com/?link=item&id=473. 

6. Andrew J.P. Maclean. Parametric Equations for Surfaces  

https://wiki.sch.bme.hu/pub/Infoalap/SzgGraf/ParametricSurfaces.pdf. 

 


